Minimum Flow Reevaluations for Chassahowitzka and Homosassa River Systems

Gabe Herrick, Senior Environmental Scientist Ron Basso, P.G., Chief Hydrogeologist

What are MFLs?

MFLs refer to <u>m</u>inimum <u>f</u>lows and minimum water <u>l</u>evels

- Minimum flows protect rivers, streams and springs
- Minimum water levels protect lakes, wetlands and aquifers

Why Establish MFLs?

- Required by law
- Established to protect water bodies from harm caused by ground and surface water withdrawals
- Tool used by the District to:
 - Review requests for withdrawals of ground and surface water
 - Plan for future water needs

Schedule

- 2013 rules: Reevaluate in six years
- March-May 2019: Peer review
- March-June 2019: Stakeholder outreach
- June 2019: Public workshop TBD
- Fall 2019: District Governing Board meeting Approve recommendation and initiate rulemaking
- December 2019: Rulemaking to adopt minimum flow

Chassahowitzka River System

Homosassa River System

Ongoing monitoring and assessment

Surface water modeling

Environmental Values

Flow Data: 11 total gages funded

WQ monitoring and analysis

Fish, vegetation, oysters, others

Environmental Values

- Recreation
- Fish
- Estuaries
- Detritus
- Water supply
- Scenery
- Nutrients
- Sediment
- Water quality
- Navigation

Using the criteria most sensitive to reductions in flow protects all environmental values.

Significant Harm

- Minimum flows are the limit at which further withdrawals would be significantly harmful to the water resources or ecology of the area
- Habitat-based 15% standard which is conservative and sensitive to differences among systems
- 17 panels: best available method

Minimum Flows results

Criteria	Chassahowitzka		Homosassa	
	2013	2019	2013	2019
Salinity	13%	8%	3%	11%
Common Snook Temperatures		8%		5%
Manatee Temperatures	9%*	10%	8%	6%

^{*} Governing Board revised to 3% based on policy decision

20 inches/year – Highest Recharge in the State

Long-term rainfall trends from Brooksville, Inverness, & Ocala

Long-term trend in Upper Floridan aquifer water levels at Chassahowitzka 1 Dp

Period of Record	Total Water Level Change (feet)	
1965-2018	-0.56	
1990-2018	+0.11	

Chassahowitzka Springshed Groundwater Withdrawals (1992-2016)

2015 Water Use Permitted Withdrawals

Estimated & Metered Groundwater Use History (Includes Domestic Self-Supply)

Homosassa Springshed Groundwater Withdrawals (1992-2016)

2015 Water Use Permitted Withdrawals

Estimated & Metered Groundwater Use History (Includes Domestic Self-Supply)

Northern Planning Region Groundwater Withdrawal History (1990-2017)

Northern District Model (Version 5.0)

- Based on geologic data from 50 sites and matching 300 well water levels
- Peer Reviewed by Outside Experts
 "NDM, Version 5.0, is the best numerical
 groundwater flow model currently available
 for assessing the effects of withdrawals in
 the central (Florida) springs region."
- Model developed cooperatively with SJRWMD, Marion County, and WRWSA

Chassahowitzka Spring Flow Change from Groundwater Withdrawals

Year	Flow Reduction (cfs)	Flow Reduction (%)
2010	2.78	-1.3
2015	2.85	-1.4
2035	4.13	-2.0
2035 w/ Conserv & Reuse	3.48	-1.7

Note: Groundwater withdrawal impact based on Northern District Model Version 5

Homosassa Spring Flow Change from Groundwater Withdrawals

Year	Flow Reduction (cfs)	Flow Reduction (%)
2010	4.83	-1.8
2015	4.86	-1.9
2035	7.77	-3.0
2035 w/ Conserv & Reuse	6.70	-2.6

Note: Groundwater withdrawal impact based on Northern District Model Version 5

Summary

- Geology and relatively low groundwater use have led to small flow changes of 1 to 2 percent
- Upper Floridan aquifer water levels are stable over the last three decades
- Current groundwater use trend is flat the last 8-10 years due to conservation, increased use of reclaimed water, and slower population growth
- The MFL allows an 8 percent reduction due to withdrawals at Chassahowitzka and a 5 percent reduction at Homosassa. Current springflow decline of 1 to 2 percent due to withdrawals. This is projected to increase to 2 to 3 percent in 2035. No recovery or additional prevention strategy is needed at this time.